Abstract

ZnO : V thin films with different doping concentration (0%, 1.8%, 3.9%, 6.8%, 10%, and 13%) were fabricated by direct current magnetron sputtering. The X-ray diffraction patterns show that the wurzite structure changed with doping concentration. Furthermore, we could not find any vanadium cluster or phase separation in the X-ray diffraction patterns. The photoluminescence of ZnO : V with different vanadium concentration was investigated. The room temperature photoluminescence spectrum indicates that the films have purple band with 370 nm and the bands with 475 and 490 nm. The peak intensity of room temperature photoluminescence spectrum was affected by vanadium contents and its position remained stable. The intensity of band with 370 nm increases with raising the vanadium concentration and then decreases. The hysteresis behavior indicates that films were ferromagnetic at 50 K. Room temperature ferromagnetism was observed for the film with the doping concentration at 6.8%. However, in this case almost no hysteresis is noticeable. The results implied that the doping concentration and crystalline microstructure influence strongly the film's magnetic characteristics. Increasing the vanadium content in the film caused the degradation of the magnetic ordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.