Abstract
The marcasite structure FeSe2−δ was synthesized using a simple solvothermal method. Systematic study of the electrical transport properties shows that the transport is dominated by variable-range hopping (VRH), with a changeover from Mott VRH at higher temperature to Efros-Shklovskii VRH for temperatures lower than the width of the Coulomb gap. This also confirms the presence of a Coulomb gap in the density of states at the Fermi energy. We observe that Yttrium doping increases the electrical conductivity dramatically without significantly reducing the Seebeck coefficient. This results in remarkably high power factors for thermoelectric performance in the regime where the mean hopping energy shifts from defect dominated to Coulomb repulsion dominated. High resolution transmission electron microscopy, in combination with theoretical calculations, proves the narrowing of the band gap by introducing Se vacancies. This leads to a good conductivity and is responsible for the excellent thermoelectric performanc...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.