Abstract
An experimental study on the flexural behavior of reinforced concrete (RC) arches strengthened with glass fiber-reinforced polymer (GFRP) layers is performed. Totally, 36 specimens including 3 un-strengthened (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were the steel reinforcement ratios, number of GFRP layers, and location and arrangement of GFRP layers. The failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was more effective than intrados strengthening approach in improving the failure load and rigidity of the arches. However, applying excessive GFRP layers at extrados can change the failure mode of arches from flexural to shear failure. The dominant failure mode of specimens was flexural and ductile failure due to the formation of five-hinge mechanism. Generally, GFRP strengthening could augment the ultimate load carrying capacity, secant stiffness, and energy absorption capacity of arch specimens by up to about 154, 300, and 93 percent, respectively. Statistical analyses were performed to assess the level of influence of each considered parameters on the behavior of RC arches. Finally, Analytical approach predicts the experimental data on arches with five-hinge failure mechanism satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.