Abstract

The present investigation is to study the effect of two different induction ports (IP), i.e., USP IP and USP-modified IP equipped with andersen cascade impactor on in vitro aerodynamic performance along with the impact of USP-modified glass sampling apparatus on delivered dose uniformity of fluticasone propionate (FP) dry powder inhaler (DPI). FP DPI was fabricated by spray drying technique using engineered mannitol microparticles (EMP) with different force controlling agents, i.e., leucine and magnesium stearate. Additionally, commercially available two DPI inhaler devices namely Handihaler® and Breezhaler® were used to aerosolize the FP blends. Spherical smooth surface of EMP showed good powder flow properties and acceptable percentage content uniformity (> 95%). Amounts of FP deposited in cascade assembly using USP-modified IP with the Breezhaler® device was significantly higher (1.32-fold) as compared with the Handihaler® device. Moreover, USP-modified IP showed better deposition as compared with USP IP. Additionally, both inhaler devices showed a satisfactory delivered dose (> 105%) for FP using modified glass sampling apparatus at a flow rate of 60L/min for 2s. It was interesting to note that not only formulation properties but also IP geometry and device resistance have significant impact on DPI deposition pattern. This study is a first detailed account of aerodynamic performance of FP using USP-modified IP and USP-modified glass sampling apparatus. Thus, it can be of potential importance for both the academic and industry perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call