Abstract

Regional or continental-scale land cover mapping requires various amounts of months of multi-temporal satellite data to pick phenological variation in vegetation, enhancing differentiability among surface cover types and improving accuracy. However, little has been addressed about the number of months/multi-temporal images needed to obtain the best result and the impact of using different amounts of these data on the accuracy of individual classes. This work aimed to analyze these effects by utilizing the various amounts of months of time series FengYun-3C (FY-3C) data within one year for land cover mapping of parts of Africa using a random forest classifier. The study area covers roughly one-third of Africa, including eastern, central, and northern parts of the continent. One-year FY-3C ten-day composite images consisting of eleven-band each with 1-km spatial resolution were divided into seven input datasets that comprise stacked images of 1-month, 3-month, 6-month, consecutive 9-month, 12-month, selected images from 12 months using band/feature importance, and selected 9-month. Comparisons of these datasets on independent test samples revealed that overall accuracy, kappa coefficient, and the accuracy of the individual classes generally increase significantly with increasing the number of data/months. However, the highest accuracy and kappa coefficient, 0.86 and 0.83, were obtained by processing selected 9-month imageries. The second maximum accuracy and kappa (0.85 and 0.82,) were found by manipulating 12-month scenes which are the same as the results obtained by applying feature reduction. Although 4% and 5% higher accuracy were achieved by manipulating 3-month and 6-month data relative to 1-month imageries, no variation of accuracy was observed between six- and nine-months of consecutive data, both yielding equal accuracy and kappa value (0.84 and 0.81) indicating redundancy of information. Overall, the high accuracy results show the feasibility of FY-3C data for land cover mapping of Africa.

Highlights

  • Land cover (LC), or the composition and characteristics of land surface elements, is critical environmental data

  • The high accuracy results show the feasibility of FY-3C data for land cover mapping of Africa

  • Land cover differs at a variety of spatial scales, from local to global, and at temporal frequencies ranging from days to millennia

Read more

Summary

Introduction

Land cover (LC), or the composition and characteristics of land surface elements, is critical environmental data. It is essential for several scientific, resources planning, and regulatory activities, as well as for a variety of applications [1]. It is a significant determinant of land use and the societal value of the land. Land cover, especially of large area, is a major factor that affects and connects different aspects of the human and physical environment [4]; and information about its distribution at a regional and global scale is crucial for investigating global changes impacting ecological and climatic systems [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call