Abstract

The phase behavior of dioleoylphosphatidylethanolamine in aqueous solutions of urea, N, N′-dimethylurea (DMU), and N, N, N′, N′-tetramethylurea (TMU) has been characterized by synchrotron X-ray diffraction and differential scanning calorimetry. All three solutes stabilize the lamellar liquid-crystalline phase at the expense of lamellar-gel phase and inverted hexagonal phase of the phospholipid when present in concentrations up to 3 M. X-ray diffraction data demonstrated that the repeat spacing of DOPE increased with increasing urea concentration, but decreased as the DMU and TMU concentrations increased. The repeat spacing of DOPE in the liquid-crystal phase dispersed in the three solutes is d(urea)> d(DMU)> d(TMU). The molecular mechanisms underlying these observations are discussed in terms of either membrane Hofmeister effect, where urea acts as a water structure breaker, or a direct insertion effect of the amphiphilic DMU and TMU molecules into the lipid head groups in the interfacial region of the phospholipid bilayer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.