Abstract

It is essential to investigate the morphological factors that contribute to air pollution's spatial distribution using mobile monitoring data, and to regulate them at the urban planning level. However, mobile monitoring data are unstable and more difficult to model under real-world atmospheric circumstances. This work assesses the nonlinear relationship between spatial distribution of air pollutants and building morphological indicators in a high-density city based on mobile monitoring and machine learning. By conducting a vehicle-mounted mobile monitoring experiment, we establish spatial distribution data sets for PM2.5 and PM10 on three typical regions in Huangpu District, Shanghai. 9 indicators of urban morphology are derived, including green view index and sky view factor, using semantic segmentation and deep learning on street-view images. Correlation analysis demonstrates that the difficulty lies in implementing linear modeling methods. The performances of six machine learning algorithms for predicting the spatial variability of pollutants are compared. The result shows that neural networks have the highest performance for repidly predicting pollutant diffusion levels in conceptual designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.