Abstract

Abstract In this work, the unsteady Reynolds-averaged Navier–Stokes (URANS) and three hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) models are employed to resolve the vortical flows in a typical single-stage side channel pump, to evaluate the suitability of these advanced turbulence models in predicting the pump hydraulic performance and unstable swirling flows. By the comparison of the overall performance, it can be observed that the results obtained by scale-adapted simulation (SAS) are closer to test data than shear stress transport (SST), detached eddy simulation (DES) and filter-based model (FBM). Simultaneously, the distribution of axial velocity on the plane near the interface is used to describe the position and intensity of internal fluid exchange between impeller and side channel. It is obvious that the intensity of mass flow exchange is strong near the inner and outer edges. Then, the vortex core region illustrates that the vortex is easily produced near the interface due to internal fluid exchange. Finally, the evolutions of circumferential in-plane vortical structures are presented to further account for the process of fluid exchange and the main vortex flows. It reveals that the recirculation flow presents a strong instability during 6–7 blade pitches as the fluid enters into the impeller and the flow is stable in downstream 7–8 blade pitches. Besides, the flow turns to be unsteady near outlet affected by the sudden change of fluid direction. This work could provide some suggestions for the choice of appropriate turbulence model in simulating strong swirling flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.