Abstract

This paper aims at investigating the effect of upstream turbulence (for instance coming from the engine’s internal geometry) on the jet flow development. Simulations are performed using ZDES [4] combined with synthetic turbulence generation methods. Two cases are studied: an incompressible, single-stream jet and a compressible dual-stream one. It is shown that the upstream turbulence reduces the RANS-to-LES transition and improves the prediction of the location of the shock-cells and global jet flow development, which advocates a systematic consideration of realistic nozzle exit conditions in eddy-resolving simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.