Abstract

In a previous study, the influence of the midfacial musculature upon growth and development of the maxilla and mandible was established macroscopically. Dry skull measurements revealed a reduced premaxillary, maxillary, mandibular, and anterior corpus length with a simultaneous increase in mandibular ramal height on the paralyzed side. It was demonstrated that these reduced premaxillary and maxillary lengths were among others the result of reduced nasofrontal growth, whereas the increased ramal height was accompanied by condylar growth alterations. This study investigated whether the growth alterations at the mandibular corpus region could be explained by altered periosteal growth at the muscle-bone interface of the zygomatico-auricular muscle and the mandibular corpus, caused by altered muscle activity acting upon the periosteal sleeve. Fifty-six 12-day-old New Zealand White rabbits were randomly assigned to either a control or an experimental group. In the experimental group, left-sided partial facial paralysis was induced surgically when the animals were 12 days old. To study the muscle-bone interface, seven follow-up time intervals were defined between 3.5 and 60 days following the surgery. At these time intervals, four randomly selected control animals and four randomly selected experimental animals were killed. The anterior mandibular corpus region with the muscle-bone interface of the left control hemimandible and the left and right experimental hemimandibles was processed for undecalcified tissue preparation. Quantitative analysis of the total bone area at the muscle-bone interface revealed no significant differences between the left control hemimandible and the left and right experimental hemimandibles. Also, qualitative study of the histologic sections showed no major changes in the appearance or development of the trabecular pattern between the groups. However, slight differences in the distribution pattern of osteoblasts and osteoclasts along the bony surface were found between the left control hemimandible and the left and right experimental hemimandibles, which seemed to explain the alterations in mandibular corpus shape between these groups. It was suggested that these changes in the distribution pattern of osteoblasts and osteoclasts were the result of changes in the loading distribution pattern acting upon the mandible, caused by an altered neuromuscular recruitment pattern of the remaining functionally intact, mandibularly attached muscles. The latter was probably the result of adaptive mandibular positioning in response to an altered occlusal relationship, which was induced by the abnormal maxillary growth as a result of the unilateral partial facial paralysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call