Abstract
ABSTRACTThis article delves to study the effect of corrugated boundary surfaces on the propagation of horizontally-polarized shear waves (SH-waves) in a magnetoelastic transversely isotropic layer under a hydrostatic state of stress lying over an elastic half-space under gravity. A dispersion equation has been derived in closed-form and is found to be in good agreement to the classical Love-wave equation. The effect of magnetoelasticity, hydrostatic state of stress, gravity, corrugation, position parameter, and undulation on the phase velocity of the SH-wave has been identified. Numerical computation along with graphical demonstration has been carried out for cadmium, magnesium, and zinc materials of hexagonal symmetry to highlight some significant facts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.