Abstract
BackgroundType 2 diabetes mellitus (T2DM) is frequently associated with dyslipidemia, which corresponds to the increase in the triglycerides and fatty acid concentrations in tissues, such as the skeletal muscle. Also, T2DM molecular mechanism involves increasing in reactive oxygen species (ROS) production and oxidative stress. The use of herbal medicines such as Uncaria tomentosa (Ut) has been proposed as an auxiliary treatment for patients with T2DM. In this study, it was evaluated the effect of Ut aqueous extract on cell viability and ROS production, in skeletal myoblasts from C2C12 lineage exposed to the free fatty acid palmitate (PA).MethodsCells were incubated with PA in different concentrations ranging from 10 to 1000 μM, for 24 or 48 h, for cytotoxicity assay. Cell death, DNA fragmentation and ROS production assays were performed in cell cultures incubated with PA for 24 h, in the pre (preventive condition) or post treatment (therapeutic condition) with 250 μg/ml Ut aqueous extract, for 2 or 6 h. Cell death was evaluated by MTT method or flow cytometry. ROS generation was measured by fluorescence spectroscopy using the DCFDA probe.ResultsCell viability was reduced to approximately 44% after the incubation with PA for 24 h from the concentration of 500 µM. In the incubation of cells with 500 μM PA and Ut extract for 6 h, in both conditions (preventive or therapeutic), it was observed an increase of 27 and 70% in cell viability respectively, in comparison to the cultures incubated with only PA. Also, the incubation of cultures with 500 μM PA, for 24 h, increased 20-fold the ROS formation, while the treatment with Ut extract, for 6 h, both in the preventive or therapeutic conditions, promoted decrease of 21 and 55%, respectively.ConclusionThe Ut extract was efficient in promoting cell protection against PA lipotoxicity and ROS generation, potentially preventing oxidative stress in C2C12 skeletal muscle cells. Since T2DM molecular mechanism involves oxidative stress condition and it is often associated with dyslipidemia and fatty acid accumulation in muscle tissue, these results open perspectives for the use of Ut as an auxiliary strategy for T2DM management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.