Abstract

By measuring force-distance curves with an environmental scanning probe microscope (SPM), we quantitatively evaluated the effect of ultraviolet (UV) irradiation on the adhesive properties of nanometer-thick perfluoropolyether (PFPE) Z03 films coated on magnetic disks. The experimental results indicated that UV irradiation shows negligible influence on the adhesion of the disk surface and on the adhesion of the mobile fraction contained in the UV-irradiated Z03 films. The effect of UV irradiation on the adhesion of Z03 films is essentially achieved by its effect that improves the bonding of the Z03 molecules to the disk surfaces. As the bonding ratio increased with UV irradiation, the adhesive force measured on the 2-nm-thick PFPE Z03 films initially decreased, but it increased after reaching a minimum at a bonding ratio of about 0.6. This is possibly attributed to the increase of the meniscus force caused by decreased mobile lubricant thickness and the decrease of the van der Waals force between the SPM probe and the sample surfaces caused by increased bonded lubricant thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.