Abstract

Bromination of double-walled carbon nanotubes (DWCNTs) was carried out using a saturated vapor of Br2 at room temperature with or without a pretreatment in bromine water. X-ray photoelectron spectroscopy revealed that ultrasound pretreatment modified the chemical state of bromine in the product. The binding energies of the Br 3d electrons in the pre-sonicated DWCNT sample were between those characteristic of the covalent C–Br bonds and the negatively charged Br2 molecules, observed when the pretreatment was not performed. Raman spectroscopy, however, clearly evidenced Br–Br vibrations in both brominated samples. Calculations of CNT–Br2 models within density functional theory were used to propose that the electronic state of a Br2 molecule depends on the adsorption site. The bromine molecules prefer to be located near edge hydroxyl groups, which acept the electron density from Br2. This increases the binding energy of Br 3d levels as compared to that for Br2 molecules in other adsorption sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.