Abstract

The effects of ultrasound power on extraction kinetic model, and physicochemical and structural characteristics of collagen from chicken lung were studied. Ultrasound power caused a significant increase in extraction rate and equilibrium concentration, with the maximum extraction yield (31.25%) at 150 W. The experimental data were consistent with the predicted ones in this empirical equation, in which the percentage error differences was 0.026–4.159%. Besides, ultrasound treatment did not affect their triple-helical structure. The thermal stability of pepsin-soluble collagen by ultrasound pre-treatment (UPSC) was higher, due to the higher imino acid content (20.76%). UPSC also exhibited better solubility and fibril forming capacity. Overall, the kinetic model of UPSC from chicken lung could serve the purpose of obtaining collagen, which displayed a potential alternative source to mammal collagens for application in food, biomaterials and biomedical fields.Graphical abstract

Highlights

  • According to Food and Agriculture Organization of the United Nations (FAO 2018) statistics, the world’s chicken production in 2018 was about 97.8 million tons

  • Development of collagen extraction kinetic model The appropriate ultrasonic power in collagen extraction from the chicken lung with ultrasound pretreatment can be identified through regression analysis

  • The data showed that the improvement in Pepsin-soluble collagen from ultrasound pretreated chicken lung (UPSC) yield was obtained when higher ultrasonic power (P) was operated in the extraction process and the highest Ce was achieved at 150 W

Read more

Summary

Introduction

According to Food and Agriculture Organization of the United Nations (FAO 2018) statistics, the world’s chicken production in 2018 was about 97.8 million tons (of which China contributed ~ 11.7 million tons).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.