Abstract
There is a growing interest in foods with added nutritional value and extended shelf life. This study investigates the use of infrared technology in the drying of banana slices to improve their stability and quality by minimizing moisture content and water activity. The drying experiments were carried out at a temperature of 70 °C, using the following pretreatments: ultrasound-assisted (UA) immersion in water for 20 and 30 min, osmotic dehydration (OD) and ultrasound-assisted osmotic dehydration (UAOD) for 20, 30 and 40 min. The osmotic process consisted of immersing the samples in the isomaltulose solution (40.0 g/100 g deionized water) for 60 min. All mathematical models used to describe the drying process showed a good fit with high R2 values (>0.98) and low value of the relative mean error E (%), the sum of squared error and the root mean squared error. The Fick's diffusion coefficient (D eff) was higher for the samples previously treated with ultrasound for 20 and 30 min. The ultrasonic treatment resulted in shorter drying times with a reduction in average time of up to 29 %. OD was not efficient in reducing drying time, resulting in samples with lower drying rates. The samples treated with ultrasound showed less isotropic shrinkage and better color parameters. The osmotic process resulted in samples with greater rehydration capacity. The impregnation of a carbohydrate with low glycemic index in banana slices was achieved by the osmotic pretreatment, resulting in a new food product with attractive nutritional properties. This advancement represents not only a significant step in the development of functional foods, but also a major innovation in terms of processing technologies. The OD was combined with infrared drying, a method known for its superior drying rates, high heat transfer coefficient and energy efficiency. The synergy of these promising techniques not only shortens the processing times but also ensures more uniform dehydration of food products, resulting in end products that not only maintain but also optimize their nutritional value. These advances offer innovative solutions to improve food quality and also minimize environmental impact through low-energy technologies such as ultrasound and infrared treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.