Abstract

Self-assembly of the amphiphilic copolymer into core–shell-like nanoparticles is the new tactic to tailor carriers toward rationalization in the field of drug-delivery systems. Herein, a facile route for examining how the entrapment of a hydrophobic and negative-charge drug affects the micellar structure of a positive-charged copolymer and its biological behavior was developed. In this study, Pluronic F127-grafted chitosan (CF127) was utilized as a positive-charged copolymer for in situ loading of nanocurcumin in a cosolvent condition. Ultrasonication was found to be an effective method to control the self-assembly of phosphocasein and its interaction with curcumin. The superstructure of the incorporated nanoparticles was fabricated in the medium under unimolecular micelles as vesicular structure (SV) at lower ultrasonic condition while large complex micelles (multimicelle aggregates, LCMs) at higher ultrasonic power density. According to transmission electron microscopy, variable UV–visible spectrophotom...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.