Abstract

The laser welding efficiency of stainless steel is high, but the welding quality is still insufficient. In order to improve the welding performance of stainless steel, a controllable ultrasonic laser welding system was designed in the paper. Through numerical simulation and experimental test, the influences of ultrasonic vibration on the mechanical properties of weld were obtained. For the simulation study, the sound vibration coupling scheme was applied to the welding model. The closed environment model was established, and the characteristic frequency and sound pressure distribution of ultrasonic were simulated and analyzed by COMSOL software. In the aspect of performance test, through the real-time monitoring of the welding system, the effect of ultrasonic on the molten pool area, molten pool flow rate and metal vapor pressure is obtained. Under different ultrasonic excitation frequencies, the changes of weld microstructure, wear morphology, hardness and oxidation were studied. The results show that ultrasonic vibration can significantly improve the wear resistance, hardness and corrosion resistance of stainless steel welds. The ultrasonic energy efficiency at the second-order characteristic frequency is higher, the flow rate in the molten pool is low, and the joint quality is better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.