Abstract

We develop a laboratory setup to estimate the force of rotation of a metal branch pipe in a viscoelastic medium. We show that 2-min action of shearing ultrasonic oscillations (frequency, 32.5 kHz; specific power, no more than 0.008 W/cm2) reduces by 17% the static limit of fluidity brought to an initial temperature of I-100 fuel oil cooled to −15°C in the wall layer of a rotating branch pipe. We obtain a linear regression dependence between the ratio of the threshold force of the onset of branch pipe motion to the consumption current of the ultrasonic transducer and the fuel temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call