Abstract

In this study, a Cu-Sn sintered bronze, used largely for con-rod bushing and automotive transmission, was treated by ultrasonic nanocrystalline surface modification (UNSM). Then, Vickers hardness and microstructural evolution of the treated region were investigated by using scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The hardness of the treated surface doubled, which is attributed to the developed of nanoscale grains, deformation twins, and high density of dislocations induced by the UNSM. Microstructural modification beneath the UNSM treated surface was typically characterized with increase of the depth: (i) nanoscale grains (top surface), (ii) intersection of deformation twins (~30 μm), (iii) high density nanoscale twin/matrix lamellae (~50 μm), (iv) interception of micro band and deformation twins (~100 μm), (v) dislocation arrays (~200 μm), (vi) low density dislocations (~300 μm) and (vii) pre-existing coarse grains and annealing twins in unaffected region (400 μm ~deeper).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.