Abstract

The effect of ultrahigh straining on the evolution of cube texture in high purity nickel (99.97%) processed by Accumulative Roll Bonding (ARB) is investigated in the present study. Fully recrystallized nickel sheet having average grain size of 28 μm is deformed by ARB to the strain levels of εeq=3.2 and εeq=6.4 corresponding to 4 and 8 cycles of ARB processing, respectively, and subsequently annealed at different temperatures. The 8 cycle ARB processed material consistently shows much higher cube volume fraction as compared to the 4 cycle processed material after different annealing treatments. Almost 100% cube volume could be obtained in the 8 cycle processed material after annealing at 800°C. The development of extremely sharp cube texture in the 8 cycle processed material could be attributed to the oriented nucleation of cube grains at early stages of recrystallization and subsequent growth of these grains. The results indicate that ultrahigh straining could be useful for applications requiring near perfect cube texture such as substrates for coated superconductors applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.