Abstract

Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in alpha-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and alpha-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (mumax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5 x retentates from the 10 kDa membrane gave, on average, 4% lower mumax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.