Abstract
In this work, we tried to improve the superconducting performance of bulk YBa2Cu3Oy (Y123) superconductors via Y2Ba1Cu1O5 (Y211) secondary phase refinement. A novel method of ultra-sonication was used to refine the Y211 secondary phase particles. The Y211 powder was treated by ultra-sonication for 0 to 80 min with steps of 20 min, keeping the power (300 W) and frequency (20 kHz) constant. For synthesis of the YBCO bulk, we employed top-seeded melt growth (TSMG) with Pt addition. Magnetization measurements showed a superconducting transition temperature at around 91 K, irrespective of ultra-sonication parameters. Interestingly, critical current density and trapped field were found to be proportional to the ultra-sonication duration. YBCO bulk sample (20 mm diameter, 7 mm in thickness) fabricated for 80 min ultra-sonicated Y211 showed a maximum trapped field of 0.42 T at 77 K, 0.3 mm above the top surface. The improved trapped field values are explained on the basis of improvements in the microstructure.
Highlights
Top-seeded melt growth (TSMG) has emerged as a typical process for fabricating large single-grained (RE)Ba2Cu3Oy (REBCO) high-temperature superconductors (HTS), where RE refers to rare earth elements such as Nd, Gd, Er, and Y [1]
We studied the optimization of ultra-sonication process parameters for producing fine Y211 particles and effect of refined Y211 particles size on the superconducting properties of melt grown YBCO bulk superconductors
The size of initial Y211 powder is very important for high flux pining and critical current density in final bulk superconductor
Summary
Top-seeded melt growth (TSMG) has emerged as a typical process for fabricating large single-grained (RE)Ba2Cu3Oy (REBCO) high-temperature superconductors (HTS), where RE refers to rare earth elements such as Nd, Gd, Er, and Y [1]. 1 Superconducting Material Laboratory, Graduate School of Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan in YBa2Cu3Oy (Y123) bulk superconductors can be improved by reducing the size of Y211 particles and by increasing the homogeneity of Y211 distribution in the matrix [7]. The microstructural defects contribute to increase of magnetic flux pinning and enhance the critical current density (Jc) and trapped field (BT) [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.