Abstract
The effect of different fast cooling rates on the microstructure and mechanical properties of the V and Ti microalloyed high strength cold-rolled sheet was studied under laboratory conditions. Five different fast cooling rates were set up as 20°C/s, 50°C/s, 200°C/s, 500°C/s and 1000°C/s, respectively. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microstructure, and the mechanical properties were also tested. The results showed that with the increase of fast cooling rate from 20°C/s to 1000°C/s, the grains of martensite and ferrite were finer, and the average grain size of both martensite and ferrite decreased from 7.7μm to 3.9μm. The proportion of ferrite in the two phases decreased while that of the martensite increased from 25.7% to 62.1%. The morphology of martensite tended to be lath, and the density of dislocation in the ferrite grains nearby the martensite gradually increased. With cooling rate rising from 20°C/s to 1000°C/s, the yield strength of the experimental steel increased from 381MPa to 1074MPa, and the tensile strength increased from 887MPa to 1199MPa. And the elongation decreased from 14.2% to 7.2%, and the product of strength and elongation decreased from 12.6GPa·% to 8.6GPa·%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.