Abstract

The technique of micro arc oxidation (MAO) uses arc discharge and high-voltage breakdown to produce a ceramic layer on valve metal surfaces. However, the common method of MAO requires immersing the workpiece in an electrolyte solution, which can result in elevated temperatures due to the arc discharge, thus negatively affecting the coating's quality and performance. This article investigates the influence of electrolyte temperature on the performance of MAO ceramic coatings, with the assistance of a robotic arm enabling valve metal reaction without immersion in the electrolyte, and precise control of electrolyte temperature through a MAO temperature monitoring system. Various techniques, such as scanning electron microscopy (SEM), hardness testing, electrochemical corrosion experiments, and friction-wear experiments, were utilized to characterize the performance of the prepared coating. The results indicate a nonlinear correlation between the temperature of the electrolyte and the thickness and hardness of the ceramic coating. The corrosion and wear resistance of the MAO ceramic coatings initially improve with increasing electrolyte temperature but eventually deteriorate. At an electrolyte temperature of 40 °C, the MAO ceramic coating exhibits the optimal corrosion and wear resistance. The variation in electrolyte temperature affects the reactivity of the electrolyte ions, leading to changes in the morphology and properties of the resulting MAO ceramic coating. These findings offer valuable insights into the interaction mechanism between electrolyte temperature and the properties of the resulting MAO ceramic coating. This is of great significance in optimizing the MAO process for specific applications and improving the overall performance of ceramic coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.