Abstract

Uniform direct chill (UDC) casting is coupled annular electromagnetic stirring and intercooling, having been utilized for the preparation of large-sized aluminum alloy billet. In this paper, the UDC casting was applied to 2A14 aluminum alloy billets with a diameter of 584 mm. Hot compression tests, cogging and ring rolling procedures were carried out for the billets, respectively. The results show that during the deformation temperature of 420 °C and the strain rate of 0.01 s−1 to 10 s−1, the flow stresses of different positions are higher and more stable in the UDC casting billet than in the normal direct chill (NDC) casting billet. The dislocation glide is the dominant deformation mechanism of 2A14 aluminum alloy. Meanwhile, the UDC casting significantly improves the mechanical properties of the rolled rings in tangential and axial directions compared with the NDC casting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.