Abstract
The intrusion of single passive intruders into granular particles has been studied in detail. However, the intrusion force produced by multiple intruders separated at a distance from one another, and hence the effect of their presence in close proximity to one another, is less explored. Here, we used numerical simulations and laboratory experiments to study the force response of two parallel rods intruding vertically into granular media while varying the gap spacing between them. We also explored the effect of variations in friction, intruder size, and particle size on the force response. The total work (W) of the two rods over the depth of intrusion was measured, and the instantaneous velocities of particles over the duration of intrusion were calculated by simulations. We found that the total work done by the intruders changes with distance between them. We observed a peak in W at a gap spacing of ∼3 particle diameters, which was up to 25% greater than W at large separation (>11 particle diameters), beyond which the total work plateaued. This peak was likely due to reduced particle flow between intruders as we found a larger number of strong forces-identified as force chains-in the particle domain at gaps surrounding the peak force. Although higher friction caused greater force generation during intrusion, the gap spacing between the intruders at which the peak total work was generated remained unchanged. Larger intruder sizes resulted in greater total work with the peak in W occurring at slightly larger intruder separations. Taken together, our results show that peak total work done by two parallel intruders remained within a narrow range, remaining robust to most other tested parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.