Abstract

Tungsten-doped TiO2 thin films were prepared by sol–gel method on fluorine-doped tin oxide-coated substrates as working electrodes of dye-sensitized solar cells. The influences of different W doping (0, 2, 4, 6, and 8 at%) on the microstructure, optical, and photovoltaic properties of the W-TiO2 thin-film DSSCs were studied by the measurement of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) analysis, and electrochemical impedance spectroscopy (EIS). An optimal DSSCs performance was observed with a 6 at% W-doped TiO2 thin film, resulting in a Voc of 0.68 V, a Jsc of 20.2 mA/cm2, an FF of 68.6%, and an efficiency (η) of 9.42%. The efficiency of DSSCs with 6 at% W-doped TiO2 photoanode improved by 75%. This is because the 6 at% W-doped TiO2 thin film increases the specific surface area and electron transfer rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.