Abstract
Highly crystalline tungsten oxide (WO3)-doped indium oxide (In2O3) films are synthesized at room temperature by the RF magnetron sputtering technique. The structural and morphological properties of the as-deposited films and the films annealed at a temperature of 300°C are investigated in detail. X-ray diffraction analysis reveals the presence of a cubic bixbyite structure with preferred orientation along the (222) plane for both the as-deposited and annealed films. Moderate WO3 doping (1 wt.%) enhances the crystallinity of the as-deposited In2O3 films, whereas the crystallinity of the films systematically decreases with an increase in WO3 doping concentration beyond 1 wt.%. Raman spectral analysis discloses the modes of the cubic bixbyite In2O3 phase in the films. Atomic force microscopy micrographs show a smooth and dense distribution of smaller grains in the films. X-ray photoelectron spectroscopy reveals the existence of W5+ in the doped films. The undoped film is highly oxygen deficient. Variation in the concentration of oxygen vacancy can be associated with the degree of crystallinity of the films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.