Abstract

Resistance to a short term exposure to a high temperature stress was examined in eggs, larvae and pupae of Drosophila buzzutii from seven localities. Across development, pupae were most resistant, followed by eggs, and then first and third-instar larvae. Variation among populations for resistance to heat stress was significant in all life stages. However, there was much less variation among populations where measured as eggs and pupae than for both first and third instar larvae. Older larvae showed large changes both in viability and developmental time, while exposure of young larvae to heat stress led to a decline in viability without delayed development. Populations that had the shortest developmental time at 25°C were relatively the most resistant to heat stress as larvae. High relative resistance at one preadult life stage was not necessarily associated with relatively high resistance at another, or with previous measurements of resistance for adults from these populations. Comparison of populations that were more similar in their pattern of change in resistance across development suggested a relationship with the climate of origin. The possibility that developmental variation in the expression of heat shock proteins may cause variation in resistance to thermal stress for different life stages is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call