Abstract

One of the favorite forms of ice for consuming is tube ice, which is produced by a refrigeration unit referred to as an ice making tower. In order to redesign the tower for the energy-efficiency purpose, the aim of this paper is to numerically investigate the effect of tube diameter on the ice thickness, the cooling load, and the specific energy consumption. The mathematical model of the ice formation within the tube is developed by assuming unsteady and one-dimensional heat conduction. The governing equations are composed of the wall and the ice regions with the convective boundary condition and isothermal solidification at the interface. The governing system is transformed into a dimensionless form and numerically solved by the finite difference method. The numerical results are validated by comparing the ice thickness obtained from the numerical prediction and that obtained from the field measurement, resulting in qualitative agreement. The variations of ice thickness, cooling load, and specific energy consumption with time for four different tube diameters are presented. The result shows the location of the minimum specific energy consumption as a function of time. By comparing between different tube diameters, the value of the minimum specific energy consumption of a small diameter tube is lower than that of a large diameter one. On the other hand, the behavior of the specific energy consumption of a large diameter tube indicates the existence of a low specific energy consumption period of time beyond the minimum point. Therefore, by choosing a proper tube diameter, the minimum value of the average specific energy consumption over the entire production cycle is obtained, leading to higher energy efficiency. ► The result indicates the minimum specific energy consumption as a function of time. ► A smaller diameter tube has a lower value of the minimum specific energy consumption, but a large one has an extended range of low specific energy consumption. ► A tube diameter should be properly selected to obtain minimum average specific energy consumption for a given amount of produced ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.