Abstract

The interaction of regulated and unregulated actin of myosin-free ghost single fibre with myosin subfragment-1 free of 5,5'-dithiobis(2-nitrobenzoic acid) light chains was investigated by polarized microphotometry. The anisotropy of intrinsic tryptophan fluorescence of regulated actin is Ca2+-dependent and has a maximal value at low (pCa greater than or equal to 7) and a minimal value at high (pCa less than or equal to 6) concentrations of Ca2+. The interaction of myosin subfragment-1 with actin induces cooperative changes in actin structure, which manifest themselves in a decrease in the anisotropy of tryptophan fluorescence. The cooperativity of conformational changes in actin, induced by myosin subfragment-1, is high for regulated actin in the absence of Ca2+ and low for unregulated and regulated actin in the presence of Ca2+. The data obtained suggest that the decrease of the flexibility of actin filaments, induced by tropomyosin or by Ca-unsaturated troponin-tropomyosin complex, results in increased cooperativity of conformational changes of actin induced by myosin subfragment-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.