Abstract

Abnormality of pancreatic exocrine secretion has been observed in patients with diabetes mellitus. Troglitazone is a novel insulin-sensitizing agent that improves hyperglycemia and hyperinsulinemia in insulin-resistant diabetes mellitus. We investigated the effect of troglitazone on exocrine pancreas in streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by intraperitoneal injection of STZ (25 mg/kg), and then 0.2% troglitazone containing rat chow was given for 2 weeks. Control diabetic animals received normal rat chow for 2 weeks. Glucose tolerance tests were performed before and after the administration of troglitazone. Pancreas weight, enzyme, protein, and insulin contents in the pancreas were measured. For the exocrine secretory study, pure pancreatic juice was collected hourly. Plasma glucose concentrations stimulated by the oral administration of 2.5 g/kg glucose in the troglitazone-treated group were significantly lower than those in the control group, but not plasma insulin concentrations. Pancreas weight in diabetic rats was less than that in normal rats. Administration of troglitazone resulted in a significant increase in pancreas weight and amylase and trypsin output. However, protein and insulin contents were not affected by the treatment with troglitazone. Both basal and cholecystokinin (CCK-8; 26 pmol/kg/h) stimulated exocrine secretion in juice volume, amylase, and trypsin output were markedly decreased in diabetic rats, compared with those in normal rats. Impaired basal and CCK-stimulated pancreatic exocrine secretion in diabetic rats recovered to the normal levels when troglitazone was given. In conclusion, troglitazone might be effective to restore exocrine pancreatic insufficiency in STZ-diabetic rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.