Abstract

Polycrystalline samples of Fe-modified PLZT (lead lanthanum zirconate titanate) are prepared by a mixed-oxide reaction technique. The formation of the compound has been confirmed by X-ray powder diffraction studies. The unit cell structure of the material has been found to be rhombohedral. Fourier-transform infrared reflection (FTIR) spectra have been recorded to correspond the structural changes associated with the phase formation. The effects of Fe concentration on the microstructure and dielectric constant of PLZT materials have been investigated. The ferroelectric phase transition of PLFZT materials is studied using dielectric measurements, which shows a shift in the transition temperature towards the higher-temperature side with increased Fe ion concentration. The piezoelectric constants of this system are investigated by the same way of changed contents of Fe ion in the main PLZT compound. The optimum values of Qm, kp, and d33 are 73, 0.32 and 406. The electrical conductivity increases with the increase in Fe ion concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call