Abstract

The paper studies chronic effect of tritiated water, HTO, (0.0002–200 MBq/L) on bioluminescent assay systems: marine bacteria Photobacterium phosphoreum (intact and lyophilized) and coupled enzyme reactions. Bioluminescence intensity serves as a marker of physiological activity. Linear dependencies of bioluminescent intensity on exposure time or radioactivity were not revealed. Three successive stages in bacterial bioluminescence response to HTO were found: (1) absence of the effect, (2) activation, and (3) inhibition. They were interpreted in terms of reaction of organisms to stress-factor i.e. stress recognition, adaptive response/syndrome, and suppression of physiological function. In enzyme system, in contrast, the kinetic stages mentioned above were not revealed, but the dependence of bioluminescence intensity on HTO specific radioactivity was found. Damage of bacteria cells in HTO (100 MBq/L) was visualized by electron microscopy. Time of bioluminescence inhibition is suggested as a parameter to evaluate the bacterial sensitivity to ionizing radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.