Abstract

The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar) against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720) was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP) in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.

Highlights

  • Wood is still one of the most used construction material due to its abundancy, production costs and environmental benefits

  • S. himantioides and R. placenta showed a moderate resistance to the other Trichoderma spp

  • The lethal effect demonstrated by the applied Trichoderma fungi in dual culture was highest for T-720 that recorded 100% deadlock within four weeks against Gloeophyllum sepiarium, R. placenta and S. himantioides and 96% deadlock against A. serialis and Fibroporia vaillantii (Table 3)

Read more

Summary

Introduction

Wood is still one of the most used construction material due to its abundancy, production costs and environmental benefits. Trichoderma-enriched biochar strategy life and is a mandatory requirement to impregnate wood products in ground contact with copper (Cu)-based wood preservatives that are effective against a range of soil microorganisms [1]. The continuous use of Cu-based wood preservatives has resulted in the development of resistance in a range of wood decay fungi [7], through the production of oxalic acid [8,9,10,11,12,13]. The resulting Cu oxalate complex loses its toxicity properties as a fungicide which results in a reduction in the service life of the wood products [14, 15]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.