Abstract
The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar) against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720) was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP) in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.
Highlights
Wood is still one of the most used construction material due to its abundancy, production costs and environmental benefits
S. himantioides and R. placenta showed a moderate resistance to the other Trichoderma spp
The lethal effect demonstrated by the applied Trichoderma fungi in dual culture was highest for T-720 that recorded 100% deadlock within four weeks against Gloeophyllum sepiarium, R. placenta and S. himantioides and 96% deadlock against A. serialis and Fibroporia vaillantii (Table 3)
Summary
Wood is still one of the most used construction material due to its abundancy, production costs and environmental benefits. Trichoderma-enriched biochar strategy life and is a mandatory requirement to impregnate wood products in ground contact with copper (Cu)-based wood preservatives that are effective against a range of soil microorganisms [1]. The continuous use of Cu-based wood preservatives has resulted in the development of resistance in a range of wood decay fungi [7], through the production of oxalic acid [8,9,10,11,12,13]. The resulting Cu oxalate complex loses its toxicity properties as a fungicide which results in a reduction in the service life of the wood products [14, 15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.