Abstract

The present research aimed to characterize and deduce the structure of a novel denture base copolymer containing antimicrobial triazine comonomer by nuclear magnetic resonance (NMR) and energy-dispersive X-ray (EDX) spectroscopies. Also, it aimed to evaluate the glass transition temperature (Tg) with the addition of TATA at different concentrations. The trial groups G10 and G20 were thermo-polymerized with triazine comonomer, whereas the control group G0 was polymerized without the triazine. NMR and EDX spectroscopies assessed copolymerization along with deducing elemental composition in mass %. The surface topographies were observed through field-emission scanning electron microscopy (FESEM). The Tg of the resultant copolymer was examined by differential scanning calorimetry. Pertinent statistical tests with relevant multiple comparison tests were exercised to compare the mean Tg of the groups. The configuration of a new copolymer containing triazine comonomer was manifested with additional protons and carbon atoms. Nitrogen was detected in the EDX spectroscopy of the trial groups. The Tg of the new copolymer was higher than the G0. The triazine comonomer in the copolymer at 20% concentration exhibited the highest Tg. The triazine comonomer substitution produced a novel denture base copolymer with enhanced Tg. The novel denture base copolymer may possess enhanced biomechanical properties due to the TATA's cross-linking capability. Nevertheless, the antimicrobial property of the triazine comonomer incorporated in the denture base composition might be beneficial in inhibiting the microbial colonization on the denture's surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call