Abstract

The effect of trehalose on the interaction of human serum albumin (HSA) with neutral and negatively charged small unilamellar vesicles (SUVs) composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) or of mixtures of DMPC (19:1 w/w) with 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol (DMPG) was studied by time-resolved fluorescence and dynamic light scattering measurements. The results are interpreted with supporting nonbond calculations describing the nonbond domains most likely to be involved in the protein-SUV interaction. In the absence of trehalose, lifetime measurements of the single Trp of HSA are indicative of two different SUV-HSA associative mechanisms depending on the [lipid]/[HSA] concentration ratios. At low ratios, depletion of phospholipid molecules from vesicles by HSA occurs independently of the lipid composition of the vesicles via favorable hydrophobic contacts. At higher ratios, vesicle-HSA assocation is favored by electrostatic interactions for the negatively charged SUNs. For neutral SUNs, hydrophobically driven penetration of HSA is proposed. All association mechanisms are damped in the presence of trehalose, due to its capacity to coat the interacting surfaces. The results of dynamic light scattering experiments clearly show that the aging of the liposomes is dependent on the lipid composition. The aging of DMPC vesicles is faster and not affected by the presence of either HSA or trehalose. The aging of DMPC/DMPG liposomes is more pronounced in the presence of HSA. These SUVs are stabilized by trehalose through different mechanisms depending on whether they are covered by HSA or not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call