Abstract

Polyurethane micelles (PM)-based nanovehicles have shown great potential in targeted delivery of therapeutics and diagnostics into tumors. However, the pathways of PMs entering cancer cells and the action mechanism of targeting ligands have yet to be understood. In this contribution, the actively-targeted PM were developed using trastuzumab as a model targeting group. It was found that PM were mainly taken up by SKOV-3 tumor cells via a micropinocytosis process, while the incorporation of trastuzumab to PM enabled a receptor-mediated endocytosis of nanocarriers in cancer cells, leading to more efficient cell entry and enhanced anticancer efficacy of chemotherapeutic drugs both in vitro and in vivo. This study is advantageous to the understanding of the action mechanism of trastuzumab, and significant for the construction of improved formulations for targeted delivery and precise therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call