Abstract

The elastostatic problem for a relatively thin-walled spherical cap containing a through crack is considered. The problem is formulated for a specially orthotropic material within the confines of a linearized, shallow shell theory. The theory used is equivalent to Reissner's theory of flat plates and hence permits the consideration of all five physical conditions on the shell boundaries separately. The solution of the problem is reduced to that of a pair of singular integral equations and the asymptotic stress state around the crack tips is investigated. The numerical solution of the problem is given for an isotropic shell and for two specially orthotropic shells. The results indicate that the material orthotropy as well as the shell curvature and thickness may have a considerable effect on the stress intensity factors at the crack tips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call