Abstract
Intraocular pressure (IOP) lowering in glaucomatous eyes is currently achieved mainly by improved aqueous outflow via alternate drainage pathways. However, the focus is now shifting to trabecular meshwork (TM), the site or major pathological changes including increased extracellular matrix (ECM) deposition and reduced matrix metalloproteinases (MMPs) secretion by TM cells. Trans-resveratrol was previously shown to lower IOP and reduce ECM deposition; however, the mechanisms of action remain unclear. Therefore, we determined the effect of trans-resveratrol on MMP-2 and -9 expression by human TM cells (HTMCs) in the presence of dexamethasone and whether it also affects adenosine A1 receptors (A1AR) expression and nuclear factor kappa B (NFkB) activation. We observed that trans-resveratrol, 12.5 μM, increased MMP-2 and -9 protein expression by HTMCs despite exposure to dexamethasone (1.89- and 1.53-fold, respectively; P < 0.001). Further it was observed that trans-resveratrol increases A1AR expression in HTMC in the presence of dexamethasone (1.55-fold; P < 0.01). Trans-resveratrol also increased NFkB activation in the presence of dexamethasone and A1AR antagonist (P < 0.01 versus dexamethasone group). These effects of trans-resveratrol were associated with increased MMP -2 and -9 expression. It could be concluded that trans-resveratrol prevents dexamethasone-induced reduction in MMP-2 and -9 secretion by NFkB activation in HTMCs. This effect of trans-resveratrol is likely to involve increased A1AR expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.