Abstract

AbstractWe evaluated six lowland rice (Oryza sativa L.) genotypes with contrasting responses to increasing Fe2+ concentrations under conditions of both low (0.3 kPa) and high (2.4 kPa) vapor pressure deficit. Dry atmospheric conditions generally enhanced transpiration with concomitant increases in Fe uptake and leaf bronzing. Some resistant genotypes were able to limit the water loss by transpiration under higher Fe concentrations thus attenuating negative effects associated with increased Fe2+ translocation at high vapor pressure deficit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.