Abstract

Sealed hemoglobin-free erythrocyte vesicles have been isolated. Imposition of transmembrane cation gradients increases the intensity of Raman scattering in the CH3-stretching region as observed with unsealed ghosts at temperatures greater than 38 degrees C and pH less than 7.0 [Verma, S. P. & Wallach, D. F. H. (1976) Proc. Natl. Acad. Sci. USA 73, 3358--3561]. Modifications in the amide I and amide III frequencies consistent with increased helicity of membrane proteins are observed upon imposition of a cation gradient. Spectrin-free vesicles also demonstrate cation gradient-sensitive intensity changes in the CH3-stretching region. However, no evidence for cation gradient-related protein conformation changes is found with these vesicles. The transmembrane potential of these vesicles has been altered by variations in anion composition and the electrogenic activity of Na+,K+-ATPase. The membrane potential was monitored by cyanine dye fluorescence. Imposition of a membrane potential (negative inside) also increased the intensity of Raman scattering in the CH3-stretching region. These results suggest that a transmembrane potential (negative inside) and/or cation gradient can energize membranes by compression of the apolar region and transfer of protein methyl residues into polar regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call