Abstract

Mg–Al alloys were prepared via sintering combined with ball milling, and the effect of a transition metal (TM = Ti, V, Ni) on the hydrogen storage properties of these alloys was investigated; the alloys were characterized via X-ray diffraction, pressure composition isotherms, and differential scanning calorimetry. The results showed that the alloys were mainly composed of Mg and the Mg17Al12 phase, and the cell volume of these phases decreased after the addition of TM (TM = Ti, V, Ni), which is attributed to the improved hydrogenation kinetics of Mg–Al alloy. Moreover, the hydrogenation/dehydrogenation temperature of the Mg–Al alloy decreased with the addition of TM (TM = Ti, V, Ni). Ti, Ni, and V acted as a catalyst, thereby lowering the reaction barrier for dehydrogenation and promoting the reversible hydrogenation reaction of the Mg–Al alloy. The onset temperature of dehydrogenation of the Mg–Al–V alloy was ~244 °C, which was 66 °C lower than that of the Mg–Al alloy (~310 °C). And the apparent activation energy of the Mg–Al–V alloy was 80.1 kJ mol−1, where it was 34.6 kJ mol−1 lower than that of Mg–Al alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call