Abstract

Substantial generation of oxygen-derived free radicals has been implicated in pathophysiology of ischemic brain damage. Immunoreactive mitochondrial manganese and cytosolic copper-zinc superoxide dismutases, initial and essential enzymes to scavenge superoxide radical anions, increased in the gerbil hippocampal neurons after transient forebrain ischemia. Neuronal cells responded to oxidative stress in ischemia and induced the protective mechanism to increase superoxide dismutases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call