Abstract

Casein microparticles are produced by flocculation of casein micelles due to volume exclusion of pectin and subsequent stabilization by film drying. Transglutaminase post-treatment alters their stability, swelling behavior, and internal structure. Untreated particles sediment due to their size and disintegrate completely after the addition of sodium dodecyl sulfate. The fact that transglutaminase-treated microparticles only sediment at comparable rates under these conditions shows that their structural integrity is not lost due to the detergent. Transglutaminase-treated particles reach an equilibrium final size after swelling instead of decomposing completely. By choosing long treatment times, swelling can also be completely suppressed as experiments at pH 11 show. In addition, deswelling effects also occur within the swelling curves, which enhance with increasing transglutaminase treatment time and are ascribed to the elastic network of cross-linked caseins. We propose a structural model for transglutaminase-treated microparticles consisting of a core of uncross-linked and a shell of cross-linked caseins. A dynamic model describes all swelling curves by considering both casein fractions in parallel. The characteristic correlation length of the internal structure of swollen casein microparticles is pH-independent and decreases with increasing transglutaminase treatment time, as observed also for the equilibrium swelling value of uncross-linked caseins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call