Abstract

The mechanical properties and microstructure of 2.7% and 4.5% sodium caseinate gels chemically acidified by glucono- δ-lactone (GDL) and cross-linked by microbial transglutaminase (TG) were studied. The acidification was performed at different temperatures. According to SDS–PAGE TG clearly caused polymerisation of caseinate irrespective of the treatment temperature (4–50 °C), The cross-linking of the proteins was more extensive at temperatures 22–50 °C. Low amplitude viscoelastic measurements showed that 4.5% caseinate gels acidified at 50 °C were formed much faster than gels acidified at 22 °C. TG only slightly increased the time of gelling. Control gels prepared without TG at temperatures of 4, 22, 37 and 50 °C were mechanically weak. Examination of the control gels with a confocal laser scanning microscope showed that gels formed at 37 and 50 °C were coarse and porous with large cavities between particle aggregates, whereas those formed at 22 °C were much more homogeneous. The TG-treated and acidified sodium caseinate dispersions formed firm gels, indicating cross-linking of casein proteins. Interestingly, the strongest gels were formed at 22 and 37 °C. TG treatment improved the homogeneity of the gel structure at temperatures of 37 and 50 °C. The hardness of TG-treated gels acidified at 4 °C increased during 1 week of storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.