Abstract

Physical training is known to alter several cardiovascular parameters. These adaptations are for a great part linked to an alteration of the myocardial responses to its autonomic nervous regulation. To further explain the parasympathetic and catecholamine effects, we hypothesized that endurance training could modify rat myocardial beta1, beta2, beta3 adrenoreceptors (AR) and M2 muscarinic cholinergic receptor (AchR) densities. Two groups of adults female Wistar rats were studied: controls (C) (N = 7) and trained (T) (N = 9). An 8-wk treadmill training protocol was performed, 5 d x wk and of 1 h x d. At the end of the training session, left ventricle and atria muscle were isolated and weighed. Then, quantification of beta1, beta2, beta3 AR and M2 AchR was performed using Western blot analysis. M2 AchR densities were not modified in left ventricle or in atria by training (respectively, 100 +/- 22%, C vs 101 +/- 14%, T and 100 +/- 23%, C vs 119 +/- 30%, T). Concerning the left ventricle beta AR isoforms, beta1AR density was decreased in T (80 +/- 10% T vs 100 +/- 14% C, P = 0.01), beta2AR was unaltered (102 +/- 12%, T vs 100 +/- 17%, C), and beta3 AR density was increased in T (139 +/- 38% T vs 100 +/- 15% C; P < 0.05). Our results show for the first time that in female rats an 8-wk treadmill training protocol alters specifically the left ventricle beta AR isoforms densities but not the M2 AchR one. These results could explain some of the beneficial cardiovascular adaptations of the physically trained heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call