Abstract

1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT; n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal- regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/ durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call