Abstract

During rapid deceleration of the body, tendons buffer part of the elongation of the muscle–tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle–tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.

Highlights

  • MATERIALS AND METHODSElastic properties of tendons are inextricably linked to the mechanical output of the muscle to which they are attached

  • Achilles tendon stiffness measured before and after training increased on average by 18%, the strain at the individualized maximal force reached in pre- and post-intervention tests (1683 ± 463 N) did not decrease significantly

  • The aim of this study was to examine the effects of a traininginduced increase in Achilles tendon stiffness on muscle–tendon mechanics when power attenuation is required, during a drop landing task

Read more

Summary

Introduction

Elastic properties of tendons are inextricably linked to the mechanical output of the muscle to which they are attached. The buffering function of the tendon provides a controlled means for the MTU to absorb energy, and is associated with a mechanism to protect muscle fascicles against damage caused by rapid and excessive strain (for review see Roberts and Konow, 2013). During a task where power attenuation is required, the tendon mechanical properties affect the active lengthening of muscle fibers and their ability to dissipate energy.

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call